2020年专业技术人员公需科目大数据培训试题【多选题】
公需科目包括专业技术人员应当普遍掌握的法律法规、理论政策、职业道德、技术信息等基本知识,以完善专业技术人员知识结构、启发创新思维、提高综合素质,本文是2017专业技术人员公需科目大数据培训试题【多选题】,
中国互联网正迈向人工智能时代,大数据已经应用到我们生活的方方面面了。大数据也是考生报考的热门专业之一,那么大数据都学什么呢?下面小编整理了相关内容,一起来看看!
“大数据”是指以多元形式,许多来源搜集而来的庞大数据组,往往具有实时性。学习要根据自身情况来定,如果是零基础,那就必须先从基础J***a开始学起,接下来学习数据结构、Linux系统操作、关系型数据库,夯实基础之后,再进入大数据的学习。
学大数据需要掌握的基础:
第一:计算机基础知识。计算机基础知识对于学习大数据技术是非常重要的,其中操作系统、编程语言和数据库这三方面知识是一定要学习的。编程语言可以从Python开始学起,而且如果未来要从事专业的大数据开发,也可以从J***a开始学起。计算机基础知识的学习具有一定的难度,学习过程中要重视实验的作用。
第二:数学和统计学基础知识。大数据技术体系的核心目的是“数据价值化”,数据价值化的过程一定离不开数据分析,所以作为数据分析基础的数学和统计学知识就比较重要了。数学和统计学基础对于大数据从业者未来的成长空间有比较重要的影响,所以一定要重视这两个方面知识的学习。
第三:大数据平台基础。大数据开发和大数据分析都离不开大数据平台的支撑,大数据平台涉及到分布式存储和分布式计算等基础性功能,掌握大数据平台也会对于大数据技术体系形成较深的认知程度。对于初学者来说,可以从Hadoop和Spark开始学起。
大数据都需要学什么:
1、J***a编程技术
J***a编程技术是大数据学习的基础,J***a是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握J***a基础是必不可少的!
2、Linux命令
对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。
3、Hadoop
Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!
4、Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。
5、***ro与Protobuf
***ro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学习大数据,需掌握其具体用法。
6、ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。
7、HBase
HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。
8、phoenix
phoenix是用J***a编写的基于JDBCAPI操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。
9、Redis
Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了J***a,C/C++,C#,PHP,J***aScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。
10、Flume
Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。
11、SSM
SSM框架是由Spring、SpringMVC、MyBatis三个开源框架整合而成,常作为数据源较简单的web项目的框架。大数据开发需分别掌握Spring、SpringMVC、MyBatis三种框架的同时,再使用SSM进行整合操作。
12、Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!
13、Scala
Scala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!
14、Spark
Spark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、SparkRDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、SparkStreaming以及Spark ML等相关知识。
15、Azkaban
Azkaban是一个批量工作流任务调度器,可用于在一个工作流内以一个特定的顺序运行一组工作和流程,可以利用Azkaban来完成大数据的任务调度,大数据开发需掌握Azkaban的相关配置及语法规则。
16、Python与数据分析
Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。
想要想成为的大数据技术人才,就必须要经历学习技术的枯燥乏味的过程。总之,大数据需要学习的技术很多,技术的更新迭代也比较快。学到老活到老,没有学的完技术,只有一直不懈努力。
1、刚毕业的学生
在学习大数据的浪潮中,刚毕业的学生人数占了非常大的比例。其中很重要的原因是在学校学习的知识达不到公司用人标准,处处碰壁就业困难,薪水也非常低。这种情况选择学习一门靠谱的技术是正确的选择之一,唯有掌握新技能才能跟上新时代。
2、已经就业的社会人员
有些人虽然说已经工作了几年,但是所在的行业和职位工作前景不被看好,没有前途。因为这是个更新换代非常快的时代,总有一些行业会被时代淘汰,所以有人会因为行业发展困难而选择转行。
3、对前途感到迷茫的人
有的人在工作了几年之后就越来越不知道自己应该做什么、要做什么,时间太长,焦虑便会一直困扰着自己。其实可能现下情况中很大部分人都是对前途没有想法的,不知道做什么的情况下可能在朋友口中或者其他渠道了解到了大数据,非常看好大数据的前景。那么这样的人便非常适合从事大数据行业,参加大数据的培训,从而把这个行业变成未来想要发展的方向,去努力改变自己的未来。那这个时候选对大数据培训机构就显得尤为重要了。
4、不满当时薪资状况的准跨行者
如果目前你不喜欢自己的工作环境以及薪资,但是对于目前来说又换岗无望的人。在这种情况下,你觉得前景不可观,那么建议也可以考虑在大数据培训机构选择学习一门技术,掌握一项赚钱的身手。
5、房贷车贷压力山大想逆袭的人
在当下的环境来讲,现在的人压力大,面临买房买车。可能好不容易买了房和车,但是还是要面临各种压力。那么为了减轻压力,不如抽出几个月的时间去“配备”自己,去选择一家有责任心的大数据培训企业。如果觉得自己经济压力过大,可以考虑去参加业余时间班的学习,利用下班和周末的业余时间去学习这样一门技术。这样一来也就相当于有了一门技术傍身,这也是一种试图减轻压力的方式,也可以说是人生逆袭的一种方式。
综上来看,上面几种人和基础好不好无关。对于大数据来讲,一个靠谱的培训机构能够让你在大数据行业有一个成功率高的起点。