2020年青海理科一本院校投档线,青海高考一本理科投档分数线统计表
2017年青海省高考一本院校投档线院校代号院校名称科类最低分0029北京大学理工661.1442581110030中国人民大学理工620.1422271230031清华大学理工653.1372791020032北京交通大学理工558.1252031100033北京工业大学理工
如有排版混乱问题,请点击下方下载
选择题:本题共12小题,每小题5分,总共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则Cu(MUN)=
A.{5}
B.{1,2}
C.{3,4}
D.{1,2,3,4}
2.设iz=4+3i,则z等于
A.-3-4i
B.-3+4i
C.3-4i
D.3+4i
3.已知命题
,sinx<1,命题e|x|1,则下列命题中为真命题的是A.p
qB.
pqC.p
qD.
(pq)4.函数f(x)=sin
+cos的最小正周期和最大值分别是A.3
和B.3
和2C.
和D.
和25.若x,y满足约束条件
,则z=3x+y的最小值为A.18
B.10
C.6
D.4
6.
A.
B.
C.
D.
7.在区间(0,
)随机取1个数,则取到的数小于的概率为A.
B.
C.
D.
8.下列函数中最小值为4的是
A.
B.
C.
D.
9.设函数
,则下列函数中为奇函数的是A.
B.
C.
D.
10.在正方体ABCD-A1B1C1D1,P为B1D1的重点,则直线PB与AD1所成的角为
A.
B.
C.
D.
11.设B是椭圆C:
的上顶点,点P在C上,则|PB|的最大值为A.
B.
C.
D.2
12.设
,若为函数f(x)=的极大值点,则A.a<b
B.a>b
C.ab<
D. ab>
二、填空题:本题共4小题,每小题5分,共20分
13.已知向量a=(2,5),b=(λ,4),若
,则λ=________.14.双曲线
的右焦点到直线x+2y-8=0的距离为_________.15.记
的内角A,B,C的对边分别为a,b,c,面积为,B=,,则b=_______.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可)。
三、解答题
(一)必考题
17.(12分)
某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备和新设备生产产品的该项指标的样本平均数分别为
和,样本方差分别记为和.(1)求
,,,(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果)
,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).18. (12分)
如图,四棱锥P-ABCD的底面是矩形,PD
底面ABCD,M为BC的中点,且PBAM.证明:平面PAM
平面PBD;若PD=DC=1,求四棱锥P-ADCD的体积.
19.(12分)
设
是首项为1的等比数列,数列满足,已知,3,9成等差数列.(1)求
和的通项公式;(2)记
和分别为和的前n项和.证明:<.20.(12分)
已知抛物线C:
(p>0)的焦点F到准线的距离为2.求C的方程.
已知O为坐标原点,点P在C上,点Q满足
,求直线OQ斜率的最大值.
21.(12分)
已知函数
.(1)讨论
的单调性;(2)求曲线
过坐标原点的切线与曲线的公共点的坐标.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系
中,的圆心为,半径为1.(1)写出
的一个参数方程。(2)过点
作的两条切线,以坐标原点为极点,轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程。23.[选修4-5:不等式选讲](10分)
已知函数
.(1)当
时,求不等式的解集;(2)若
,求的取值范围.