2020年专业技术人员公需科目大数据培训试题【多选题】
公需科目包括专业技术人员应当普遍掌握的法律法规、理论政策、职业道德、技术信息等基本知识,以完善专业技术人员知识结构、启发创新思维、提高综合素质,本文是2017专业技术人员公需科目大数据培训试题【多选题】,
大数据的岗位可以分为三大类:大数据系统研发人员、大数据应用开发人才和大数据分析人才;最普遍同时需求也大的是大数据系统研发工程师、大数据应用开发工程师和数据分析师。
1、数据规划师
在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。
2、数据工程师
大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。
3、数据架构师
擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。
4、数据分析师
职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。
5、数据应用师
将数据还原到产品中,为产品所用。他们能够用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。
6、数据科学家
大数据中的领导者,具备多种交叉科学和商业技能,能够将数据和技术转化为企业的商业价值。
数据分析师
数据分析师应该是当下大家听到过最多的大数据岗位,这个工作指的是不同行业中,从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析数据,实现数据的商业意义。
因此,作为一名数据分析师,你需要掌握SPSS、STATISTIC、Eviews、SAS等数据分析工具以及数据分析的营销思维。根据各大招聘平台的统计,数据分析师的月薪一般在10K多点。
数据挖掘工程师。
这个工作一般是指从大量的数据中通过算法搜索隐藏于其中知识的工程技术专业人员。这些知识可用使企业决策智能化,自动化,从而使企业提高工作效率,减少错误决策的可能性,以在激烈的竞争中处于不败之地。
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,尤其是要具备深厚的统计学基础,需要熟悉R、SAS、 SPSS等统计分析软件。数据下机器学习和算法实施相关经验,熟悉hadoop, hive, map-reduce等。总的来讲,这也是一份比较高薪的工作,月收入在20K~30K。
数据算法工程师。
在企业中负责大数据产品数据挖掘算法与模型部分的设计,制定数据建模、数据处理和数据安全等架构规范并落地实施。数据算法工程师需要具备的知识有扎实的数据挖掘基础知识,精通机器学习、数学统计常用算法,掌握常见分布式计算框架和技术原理,如Hadoop、MapReduce、 Yarn、Storm、Spark等;熟悉Linux操作系统和Shell编程,至少熟练掌握一门编程语言。数据算法工程师也是属于高薪工作,月收入在20K~15K之间。