高考备考网

2020年全国卷1高考数学试卷试题及答案解析(答案WORD版)

2023-01-06 18:27

2015年高考全国卷1理科数学试题及答案解析(word精校版)

注意事项:

1.本试卷分第ⅰ卷(选择题)和第ⅱ卷(非选择题)两部分。第ⅰ卷1至3页,第ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题***完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第ⅰ卷

一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z满足

=i,则|z|=

(a)1(b)

(c)(d)2

(2)sin20°cos10°-con160°sin10°=

(a)

(b)(c)(d)

(3)设命题p:

nn,>,则p为

(a)

nn,>(b)nn,≤

(c)

nn,≤(d)nn,=

(4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为

(a)0.648(b)0.432(c)0.36(d)0.312

(5)已知

是双曲线上的一点,是上的两个焦点,若,则的取值范围是

(a)(-

,)(b)(-,)

(c)(

,)(d)(,)

(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有

a.14斛b.22斛c.36斛d.66斛

(7)设d为

abc所在平面内一点,则

(a)

(b)

(c)

(d)

(8)函数

的部分图像如图所示,则的单调递减区间为

(a)

(b)

(c)

(d)

(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=

(a)5(b)6(c)7(d)8

(10)

的展开式中,的系数为

(a)10(b)20(c)30(d)60

(11)圆柱被一个平面截去一部分后与半球(半径为

)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16+20,则=

(a)1(b)2(c)4(d)8

12.设函数

,其中,若存在唯一的整数,使得,则的取值范围是()

a.

b.c.d.

第ii卷

本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。

二、填空题:本大题共3小题,每小题5分

(13)若函数

为偶函数,则

(14)一个圆经过椭圆

的三个顶点,且圆心在轴上,则该圆的标准方程为。

(15)若

满足约束条件则的最大值为.

(16)在平面四边形

中,∠a=∠b=∠c=75°,bc=2,则ab的取值范围是

三.解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)

为数列的前项和.已知,

(ⅰ)求

的通项公式:

(ⅱ)设

,求数列的前项和。

(18)如图,四边形abcd为菱形,∠abc=120°,e,f是平面abcd同一侧的两点,be⊥平面abcd,df⊥平面abcd,be=2df,ae⊥ec。

(1)证明:平面aec⊥平面afc

(2)求直线ae与直线cf所成角的余弦值

(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费

和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值。

46.6

563

6.8

289.8

1.6

1469

108.8

表中

(ⅰ)根据散点图判断,

与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(ⅱ)根据(ⅰ)的判断结果及表中数据,建立y关于x的回归方程;

(ⅲ)已知这种产品的年利率z与x、y的关系为

。根据(ⅱ)的结果回答下列问题:

(i)年宣传费x=49时,年销售量及年利润的预报值是多少?

(?)年宣传费x为何值时,年利润的预报值最大?

附:对于一组数据

,其回归直线的斜率和截距的最小二乘估计分别为:

(20)(本小题满分12分)

在直角坐标系

中,曲线与直线交与两点,

(ⅰ)当

时,分别求c在点m和n处的切线方程;

(ⅱ)

轴上是否存在点p,使得当变动时,总有∠opm=∠opn?说明理由。

(21)(本小题满分12分)

已知函数

(ⅰ)当a为何值时,x轴为曲线

的切线;

(ⅱ)用

表示m,n中的最小值,设函数,讨论h(x)零点的个数

请考生在(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做第一个题目计分,做答时,请用2b铅笔在答题***将所选题号后的方框涂黑。

(22)(本题满分10分)选修4-1:几何证明选讲

如图,

是的直径,是的切线,交于

(i)若d为ac的中点,证明:de是

的切线;

(ii)若

,求∠acb的大小.

(23-)(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系

中。直线:,圆:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系。

(i)求

,的极坐标方程;

(ii)若直线

的极坐标方程为,设与的交点为,,求的面积

(24)(本小题满分10分)选修4?5:不等式选讲

已知函数

.

(ⅰ)当

时,求不等式的解集;

(ⅱ)若

的图像与轴围成的三角形面积大于6,求的取值范围